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Abstract 

The  existence o f  Dirac  monopo le s  is shown  to be incompat ib le  with Gali lean invariance.  
A discuss ion follows on  the  interpreta t ion o f  monopo les  physics  in a Gal i lean approx ima-  
t ion.  

Some authors (Kerner, 1970; Schwinger, 1969; Zwanziger, 1968) have 
recently investigated the physical implications of the existence of particles 
endowed with both electric and magnetic charge. In particular, Schwinger 
has suggested that quarks could be such particles (dyons); such a property 
would give a very nice explanation of some fundamental properties in 
relation with strong interactions. ~ 

Existence of monopoles or dyons can be admitted in a very natural way 
in the framework of special relativity. The theory is usually written in a 
manifestly covariant way. At first sight, it seems natural and simpler to 
look for a Galilean interpretation of such particles. Unfortunately, such an 
interpretation is not obvious because the beautiful symmetry between 
electric and magnetic fields in Maxwell equations is no longer true in 
Galilean invariant electrodynamics. 

One of the assumptions usually made concerns the electromagnetic force 
acting on a particle of electric charge e and magnetic charge g. 

f = e(E + v x B) + g(B - v • E) (1) 
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Such a formula is obviously induced by relativity Where a boost of speed v 
is known to transform the electric and magnetic vectors in the foUowing 
way 

E ' - E + 7 ~ x B  l + ? , c  x x E  

B ' =  B -  ~ x E - - I  +--}c • x B  

where ~ = [1 - (v2/c2)1 -~12. 
It is evident that, by neglecting terms of order two in v/c, one gets 

E' = E +  v - x B  
c 

B , = B _ V _ x E  
c 

Such a way of getting the non-relativistic limit is in fact careless; this is not 
surprising due to the fact that c is taken as the unit speed instead of making c 
going to infinity in adequate formulae. 

Before giving a logical description of a Galilean invariant theory, we 
intend to present a simple argument against formula (1). In the proper 
Galilean frame, where the speed of the particle is zero at a given time, one 
would require 

f =  e E + g B  

Suppose the field transforms under a boost in the foIlowing way 

E--> E ' - = E + ~ v  • B 

B --> B' ~- B -  ;.v x E 

where 0~ and 2 are constants. 
Make a boost v, then a boost v'. One gets 

f = e[E + c~(v + v') x B] + g[B - 2(v + v') x E] 

- ~2[ev' x (v x E)  + gv'  x (v x B)]  

Galilean law of additivity of speeds is only satisfied if ~2--0, that is if 
or 2 is zero. The correct formulae are, in fact, 

E ' = E + v x B  

B' = B (2) 

They are the formulae implicitly used by physicists before Maxwell intro- 
duced the 'displacement' terra proportional to OE/~t in his equations. In 
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fact, equations (2) have been rigorously derived by Levy-Leblond (1965, 
1967) from Galilean invariance. 

II 

The Maxwell equations involving monopoles are 

1 0E 
V • B - ~ - = j ,  

V.E = p. 

aB 
V x E + Ot -J" 

or, covariantly, 
V . B  = - j , , ,  

(3) 

1 0 A *  
E = - V  • A*, B = - V ~ *  - - - - -  

c 2 at 

(5) 

0n F"" = A '  
an/rnv =j,2 

where the four-vectors Je" = (Pe,Je) and ]m'= (Pm,J,,) denote the electric 
current and magnetic current, respectively. The generalized Maxwell 
equations imply both conservation of electric and magnetic charge. The 
velocity of light c is made explicit in view of the Galilean limit c ~ ~. 

In a given external electromagnetic field, the motion of'a particle of  mass 
m~, electric charge e~ and magnetic charge gl is described by the following 
Lagrangian 

L=-mle2"v/ ( l  - v 1 2 / c 2 ) + e l A . v l - e l ~ + ~ g l A * . v l - g l ~  * (4) 

where the four-potentials 
A n = ((/i, A) 

A * n = ( O * , ~ A  *) 

are solutions of the following equations in space-time domains free of  
charge 

F,~ = a. A n - O. A~ 

ffnv = O. A,* - O n A.* 

or. in a non-covariant way. 

OA 
E = - V ~ - - -  B =  V x A 

0t ' 
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Now, suppose the electromagnetic field to be produced by a single 
particle (mz, ez,g2). As long as mz is large compared to ms, the particle 2 can 
be considered as fixed and the potentials and fields are given by 

e2 A =  r •  

= r g2 r(r - -  r .  n )  

~ ,  g2 A* r x n 
: r = - - e 2  r ( r  - -  r. n) 

r 
E = e2~ 

1" 
B = g 2 ~  

The choice of potentials corresponds to the Dirac choice of semi-infinite 
singularity or string (Dirac, 1948) (the unit vector n is arbitrary). 

l I I  

In Galilean electrodynamics, the field equations are easily derived from 
equations (3) by making e go to infinity. One gets 

V x B = j e  

V.E = Pe 

aB (6) 
V x E + ~ - = - i m  

V.B = p,, 

Except for source terms, these equations have been derived by Levy- 
Leblond (1965, 1967) as Galilean invariant equations for particles of zero 
mass and helicity one. The only difference between (3) and (6) lies in the 
absence of the Maxwell term 3E/3t.  This has important physical implica- 
tions. First, we note that instead of divje + (ape~at) = O, one  has 

divje = 0 

One can choose between two attitudes: 

(i) One requires that je is still an electric current, that is to sayit character- 
izes charges in motion. The conservation of electric charge can only 
be an assumption since it is not a consequence of field equations. 
I f  we do so, we get the condition ape~at = 0 which implies constant 
densities. In such a scheme,  electrically charged particles cannot exist:  
they would obviously violate the law 3pe/at = O. Only electrically 
charged fluids are compatible with this interpretation (for instance 
permanent electric currents in wires). 
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(ii) One would better choose the following alternative: the vector density 
Je is a source for magnetic fields, a source which has nothing to do with 
electric charges. In such a theory, an electric charge in motion cannot 
produce any magnetic field. 

Because we are concerned with particles, it is more natural to adopt the 
last attitude. Note that Galilean relativity implies conservation of magnetic 
charge, a fact which creates a deep dissymmetry between electric and 
magnetic effects. Such a dissymmetry also appears in the non-relativistic 
limit of  the Lagrangian (Inonu & Wigner, 1953). One gets 

L = �89  vl  2 + e i  A i ,  vi  - e i  q~ - g l  @* (7)  

Equations (5) become 
aA 

E = - V q b - - -  B = V x A 
a t '  (8) 

E = - V  x A* B = - V ~ *  

It  is easy to check Galilean invariance of the Lagrangian (7) by performing 
a pure Galilean transformation of speed u. Potentials and fields transform 
as follows: 

�9 ' = ~ - n . A  A ' = A  
(9) 

4i'* = 4i* A*'  = A* - u~* 

E ' = E + u x B  
B' = B ( 2 )  

Now suppose that particle 2 which produces the external field has a speed 
v2. In its rest system at time t, one has 

~b' e2 . A '  r x n 

= r = g2 r(r - r. n) 

~ , ,  = g2 A * '  r x n 
r = - e 2  r(r - r. n) 

r 
E' = e2~ 

r 
BS = g2 

Transformation formulae (9) and (2) provide us with potentials and fields 
measured in the laboratory 

e2+ r x n  r x n  
: - -  g 2 V 2 r  = g 2  r r (r - r .  n) A (r - r. n) 

r x n  V 2 
q~* = g~r A* = -e2 r(r  .S 17n) + g2 r 

(10) 



44  H. BACRY AND J. KUBAR-ANDRE 

E = e 2 r ~ - g z V r  ~ r  

B =g2~a 

( l l )  

This last equation gives the proof that an electric charge in motion 
cannot produce a magnetic field. On the other hand, a magnetic charge in 
motion does produce an electric field. 

It is interesting to look for the Lagrangian describing the motion of 
particle 1 in the field produced by particle 2. This is readily obtained by 
bringing the expressions (10) into the Lagrangian (7). One obtains 

_ _  (vl - v 2 ) .  (r • n) L = �89 vl 2 el e2 + gl g2 + e~ g2 
r r(r - r. n) 

and the Lagrange equation is 

dr1 . r (vl - v 2 )  • r 
ml -~- = (el e2 + gl g2) ~ + el g2 r a 02)  

an equation which could be derived directly from Newton's law and equa- 
tions (11). 

By a symmetrical argument, one would readily obtain the equation of 
motion of particle 2 in the field produced by particle I (one must replace 
1 by 2 and r by - r )  

dr2 . r (v2-  vl) • r (13) 
m2 ~ -  = -(el  e2 4 gx g2) ~ - e2 gl r 3 

If  one requires the validity of Newton's third law (or, equivalently, transla- 
tional invariance), one must write 

dvl dv 2 
ml ~ + m 2 - ~  =O 

that is 

el g2 + e2 gl = 0 

This condition is very strong. Consider three particles endowed with 
non-zero electric charges. One gets 

el  g2 -{- e2 g l  = e2 g3 -}- e3 g2 = ea g l  + el  g3 ----- 0 
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The condition el e2e3 # 0 requires one to write successively 

e2 e3 e2 e___~a 
g2 = - ~ gl g3 = - ~ gl el gl = 0 

which leads to gt = 0. Therefore, there is no place for mixed charged particles. 
Moreover, if one writes equation (7) for a system composed of one electric 
charge el and one magnetic monopole g2, one would get 

e l  g2 ----- 0 

which needs to reject the existence of magnetic charge or electric charge. 

IV 

As shown by Zwangiger and Schwinger, the correct (therefore, relativistic) 
theory of  two interacting particles must involve the two quantities el e2 + 
gig2 and e l g 2 -  e2gl. The presence of the last quantity instead of elg2 
guarantees the validity o f  Newton's third law. If  we make the substitution 
exg2 ~ (elg2 - elgl) in equation (12) and ezgl --~ (e2gl - eig2) in equation 
(13), we are led to two equations of  motion in agreement with Galilean 
invariance but without intermediate field. It is a theory with direct inter- 
actions. We arrive at the conclusion that a Galilean invariant theory of 
magnetic charges is incompatible with the existence of the electromagnetic 

field carrying electromagnetic interactions. According to the conclusion of  
Section III, we are left with the following possibilities in a Galilean theory 

(i) Existence of electric and magnetic monopoles without field. 
(ii) Existence of an electromagnetic field and electric charges alone (or 

magnetic charges alone). 

However, the Galilei group suffers two interpretations: either it is 
considered as the kinematical group of our universe or as the approximation 
of  some other kinematical groups when some restrictions are fulfilled. 
Until now, we have examined the first point of view. From the second one, 
it is known (Inonu & Wigner, 1953) that the Galilei group is obtained, 
through a speed-space contraction (Bacry & L6vy-Leblond, 1968), from the 
Poincar6 group; this means that it is a good kinematical group whenever 
speeds are small compared to c and space intervals small compared to time 
ones (Levy-Leblond, 1965). It is necessary to examine monopoles from 
this point of view. 

First, we suppose magnetic monopoles not to exist. We make c = 1 which 
implies that electric and magnetic fields are measured with the same unit. 
If  speeds are small (say v ~ 5) the Lorentz force is of the order E + eB. The 
force must be weak enough in order to avoid speeds increasing too much. 
This condition implies E to be of  the order of eB, that is electric fields must 
be small compared to magnetic fields. This condition would have to be 
added to that on speeds and space intervals if we want to use Galilean 
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electrodynamics.l" By neglecting terms of order 5 2, it is readily seen that the 
Galilean limit for boost formulae is 

E - - ~ E + v •  

B ~ B  

This has already been obtained in the context of an exact symmetry. 
Similar arguments could be used in a situation where only magnetic 

monopoles are supposed to exist. Besides the conditions on speeds and 
space intervals, one would have to suppose small magnetic fields and the 
following formulae 

E ~ E  

B - - - ~ B - v  x E 

and the Lorentz force would read~. 

f = g ( B - v  x E) 

Obviously, the interesting question concerns the case where both electric 
and magnetic charges are present in Nature. The answer must take into 
account the Dirac derivation of charge quantization. It is well known, 
following Dirac's results, that electric charges are much smaller than 
magnetic ones, the ratio ~ = eg -~ is of the order ~-~7. It can be readily seen 
that the first-order Lorentz force 

f =  eE + g ( B -  v x E) (14) 

is a good Galilean approximation when e f  -1, B E  - I  and v are of the order 
of  e. Nevertheless, this formula corresponds to a rather strange situation 
where large magnetic charges and weak magnetic fields are simultaneously 
involved. An assumption of the type E B  -~ ~ ~ would lead to too strong 
forces, a fact which cannot be admitted in the framework of  a GaliIean 
theory since it is in contradiction with our assumption of first-order forces. 
Obviously, we could assume E B  -~, eg  -1 and v of  different orders in ~ in 
order to make formula (14) valid in the Galilean limit, but it does not seem 
to us that such an approach could be interesting. We only intended to 
underline the difficulties which appear in the elaboration of  a Galilean 
consistent theory of  magnetic monopoles, the main important fact being 
the need of direct interactions without field support. 

I" This condition could be obtained through the contraction process by using, instead of 
the Poincar6 group itself, another inhomogenization of the Lorentz group involving 
'field translations'. 

:~ In fact, when only one kind of monopoles is present in Nature, it is absolutely im- 
possible to distinguish between electric and magnetic ones, by using electromagnetic 
interactions. 
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